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Context

Linkage criteria

We consider that we have N data points in a simple D-dimensional Euclidean space

and we assume a given distance d in that space, that can be for example usual Euclidean distance 
(L2), Manhattan distance (L1) or Maximum distance (L∞)

In that space, we also consider a linkage criterion l so that for any two clusters of points A and B

l(A,B) is a measure of the similarity between the two clusters A and B. Some usual linkage criteria 
are for example minimum, maximum, average or ward’s criteria.
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Generate a Hierarchy of clusterings
As indicated by its name, hierarchical clustering is a method designed to find a suitable clustering 
among a generated hierarchy of clusterings. The generated hierarchy depends on the linkage 
criterion and can be bottom-up, we will then talk about agglomerative clustering, or top-down, 
we will then talk about divisive clustering.

Agglomerative clustering consists in setting an initial clustering with N clusters containing a 
single point each and defining iteratively “hierarchically higher” clusterings. At each iteration, 
we take in the current clustering the two “closest” clusters according to the chosen linkage criteri-
on and we merge these two clusters together so that to obtain a new clustering with one less 
cluster.

On the contrary, divisive clustering consists in setting an initial clustering with a single cluster con-
taining the N points and defining iteratively the “hierarchically lower” clusterings.

When to stop merging clusters?
The agglomerative and divisive processes we just described give a way to generate a hierarchy of 
clusterings. However we still need to find a way to pick one final clustering among all those 
that have been generated.

A common approach consists in plotting the dendrogram of this hierarchy and in identifying the 
“larger gaps” as possible candidates for cuts. Let’s illustrate all this with a schema.  
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is the largest (much larger 
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Example
Let’s illustrate this notion of hierarchical clustering with a simple example for which we consider the 
natural Euclidean distance and the minimum linkage criterion.

REMARKS
The agglomerative process has a O(N3) time complexity and a O(N2) memory complexity that makes 
it not tractable for large datasets.

The divisive process requires at each iteration to search for the best split, implying a O(2N) time 
complexity that has to be tackled with some heuristics.
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