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) CONTEXT

We consider that we have N data points in a simple D-dimensional Euclidean space
{331,372, ...,l’N}

and we assume a given distance d in that space, that can be for example usual Euclidean distance
(L,), Manhattan distance (L,) or Maximum distance (L)

) LINKAGE CRITERIA

In that space, we also consider a linkage criterion | so that for any two clusters of points A and B
A:{al,ag,...,a|A|} B:{bl,bg,...,b|3|}

I(A,B) is a measure of the similarity between the two clusters A and B. Some usual linkage criteria
are for example minimum, maximum, average or ward'’s criteria.

for minimum linkage
K criterion, I(A,B) is the
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and a point of B and a point of B
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) GENERATE A HIERARCHY OF CLUSTERINGS

As indicated by its name, hierarchical clustering is a method designed to find a suitable clustering
among a generated hierarchy of clusterings. The generated hierarchy depends on the linkage
criterion and can be bottom-up, we will then talk about agglomerative clustering, or top-down,
we will then talk about divisive clustering.

Agglomerative clustering consists in setting an initial clustering with N clusters containing a
single point each and defining iteratively “hierarchically higher” clusterings. At each iteration,
we take in the current clustering the two “closest” clusters according to the chosen linkage criteri-
on and we merge these two clusters together so that to obtain a new clustering with one less
cluster.

On the contrary, divisive clustering consists in setting an initial clustering with a single cluster con-
taining the N points and defining iteratively the “hierarchically lower” clusterings.

) WHEN T0 STOP MERGING CLUSTERS?

The agglomerative and divisive processes we just described give a way to generate a hierarchy of
clusterings. However we still need to find a way to pick one final clustering among all those
that have been generated.

A common approach consists in plotting the dendrogram of this hierarchy and in identifying the
“larger gaps” as possible candidates for cuts. Let’s illustrate all this with a schema.
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third C
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the value of the linkage

crﬁterion between 3 and Aand B
4is B, they are merged B
second
A
0 the “cut” associated with

thg vqlue of the linkage the largest gap generates
criterion between 1 and 1 2 3 4 two clusters: {1,2} and
2 is A, they are merged

first K lt 7\ j (3,4}

the 4 points to be clustered

More on this subject at: I ) towards

www.towardsdatascience.com data science




Hierarchical clustering - 03

tds sheets | clustering

) EXAMPLE

Let's illustrate this notion of hierarchical clustering with a simple example for which we consider the
natural Euclidean distance and the minimum linkage criterion.
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) REMARKS

The agglomerative process has a O(N3) time complexity and a O(N?) memory complexity that makes
it not tractable for large datasets.

The divisive process requires at each iteration to search for the best split, implying a O(2N) time
complexity that has to be tackled with some heuristics.
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